Strictly commutative complex orientation theory

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strictly commutative complex orientation theory

For a multiplicative cohomology theory E, complex orientations are in bijective correspondence with multiplicative natural transformations to E from complex bordism cohomology MU . If E is represented by a spectrum with a highly structured multiplication, we give an iterative process for lifting an orientation MU → E to a map respecting this extra structure, based on work of Arone–Lesh. The spa...

متن کامل

Extensions of Strictly Commutative Picard Stacks

Let S be a site. We introduce the notion of extension of strictly commutative Picard S-stacks. Applying this notion to 1-motives, we get the notion of extension of 1-motives and we prove the following conjecture of Deligne: if MRZ(k) denotes the integral version of the neutral Tannakian category of mixed realizations over an algebraically closed field k, then the subcategory of MRZ(k) generated...

متن کامل

Realisibility of Algebraic Galois Extensions by Strictly Commutative Ring Spectra

We describe some of the basic ideas of Galois theory for commutative S-algebras originally formulated by John Rognes. We restrict attention to the case of finite Galois groups. We describe the general framework developed by Rognes. Central rôles are played by the notion of strong duality and a trace or norm mapping constructed by Greenlees and May in the context of generalized Tate cohomology. ...

متن کامل

Realizability of Algebraic Galois Extensions by Strictly Commutative Ring Spectra

We discuss some of the basic ideas of Galois theory for commutative S-algebras originally formulated by John Rognes. We restrict attention to the case of finite Galois groups and to global Galois extensions. We describe parts of the general framework developed by Rognes. Central rôles are played by the notion of strong duality and a trace mapping constructed by Greenlees and May in the context ...

متن کامل

Non-commutative Bloch Theory

For differential operators which are invariant under the action of an abelian group Bloch theory is the preferred tool to analyze spectral properties. By shedding some new non-commutative light on this we motivate the introduction of a non-commutative Bloch theory for elliptic operators on Hilbert C-modules. It relates properties of C-algebras to spectral properties of module operators such as ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2017

ISSN: 0025-5874,1432-1823

DOI: 10.1007/s00209-017-2009-6